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Abstract. The time-dependent Landau-Ginzburg equation of the form 7 ,  + DA7 = P ( 7  1 
where A is the three-dimensional Laplacian operator and P ( 7 )  is an odd-order polynomial 
up to fifth order, has been used to describe the kinetics of non-conservative order parameters 
7 at and near criticality. The symmetry reduction method has been applied to solve this 
equation when P(q) is given by P ( q ) = a + b 7 + c q 3 + d 7 ’ .  This can be used to model 
both first- and second-order phase transitions which take place with ( a  # 0)  or without 
( a  = 0) an external field. When either d f 0 or c ti 0, two general cases have been found: 
(i) a = b = 0 or a = b = d = 0, where the symmetry group involves translations in (3 + 
1)-dimensional spacetime, rotations in three-dimensional space and a dilation; ( i i  j other- 
wise, where the symmetry group involves translations in (3  + 1)-dimensional spacetime and 
rotations in three-dimensional space. All the reductions to O D E  and the corresponding 
symmetry variables have been derived. The PainlevC-type reduced ODE have been solved 
exactly while the remaining ones can be analysed numerically or approximately. Physical 
properties of the obtained solutions have been discussed, including their energies. 

1. Introduction 

Landau’s theory of phase transitions (Landau and Lifshitz 1980) is based on the 
assumption that the thermodynamic potential Go of a near-critical system is expandable 
in a power series in a symmetry invariant 7 called the order parameter. For scalar 
order parameters we have 

k = n  

with A ,  = a( T - T,) sufficiently close to T, .  This mean-field approach can be used to 
describe a variety of second-order (for p = 4 or  p = 6, A,  = 0 and A4 > 0) and  first-order 
(for either p = 6, A ,  = 0, A4 < 0 or  p = 4 and A,  # 0) phase transitions; both temperature 
induced (for n = 2)  and field induced (for n = 1). Minimisation of Go with respect to 
7 yields the average value of 7, (T), which is zero above the critical temperature and 
non-zero below it. In  the absence of external fields, the second-order transition occurs 
at  T = T, while the first-order transition occurs at T,* = T , + A : / 4 a A 6 .  In the latter 
case thermal hysteresis arises between T s =  T,+ A:/3aA6 and T,.  The mean-field 
analysis of transitions involving externally applied fields can be found in Shimizu 
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(1982). It is worth noting the presence of double hysteresis loops in first-order 
field-induced transitions and single hystersis loops in second-order field-induced transi- 
tions. 

Aharony (1983) has pointed out that the polynomial of (1) representing G,, is very 
useful in studying multicritical points such as, e.g. the tricritical point occurring for 
A ,  = A ,  = A4 = 0. We assume that at least one of the coefficients A4 or A, is non-zero. 

The appearance of a non-zero order parameter is a manifestation of a broken 
symmetry that may, in general, be of one of the following four types (or combinations 
thereof): (i) translational; (ii) rotational; (iii) time-reversal and  (iv) gauge-invariance 
(Anderson 1984). Broken symmetries not only lead to mean fields (equilibrium phases), 
but also to lower-dimensional defect structures such as domain walls, vortices, disclina- 
tion points, dislocations, grain boundaries, etc. Their analytical form is usually found 
by minimising Go, to which a term resulting from the coarse-graining of intersite 
interactions has been added. For scalar order parameters the simplest such invariant 
is proportional to (Vv)*, so that the thermodynamic functional adopted for this paper 
is 

in three-dimensional space. 
In a more general context, the coefficient 6 may be regarded as a bilinear form 6, 

which couples with a27/ax,ax,. If a,, is positive definite and diagonal, then the 
substitution x, = f i x :  transforms a,, into an  identity matrix. This explains our 
rationale for treating 6 as a scalar coefficient. 

Dynamical aspects of critical phenomena such as relaxation times, decay rates, 
response functions, transport coefficients, etc, (Hohenberg and Halperin 1977) are of 
much interest and are studied by assuming that 77 = r](x,  t )  where t is the time variable. 
Time evolution of the order parameter towards its thermodynamic equilibrium can be 
derived through a Markovian master equation for the probability distribution P( 7, t )  
whereby (Metiu et a1 1976) 

and  the transition amplitude W is Gaussian distributed with a Boltzmann weight factor 

where p = ( k T ) - ' .  This yields the following integro-differential equation of motion 
for 7 (Metiu et al 1976): 

where r > 0 is the so-called Landau-Khalatnikov damping function which sets the 
timescale of the relaxation process. If 77 is non-conserved globally (e.g. the deformation 
modes in structural phase transitions), then (5) is reduced to the equation for the most 
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probable path, namely 

d t 7 + V ' ~  = a +  b ~ + c , ~ ' + d , ~ ~  (6) 
a t  

where we have rescaled the time variable according to t + - f p r 6 t  and a =  h / 6 ,  
b = 2A2/S, c = 4A4/6 and  d = 6A6/6. Equation (6) is called the time-dependent 
Landau-Ginzburg equation (TDLG) and describes diffusive relaxation in critical systems 
(Metiu er a1 1976, Gunton and  Droz 1983, Gunton er a1 1983, Koch 1984). Applications 
of this equation cover a broad range of systems including liquid crystals (Kawasaki 
and  Ohta 1982), ferroelectrics (Gordon 1983, Ishibashi and  Suzuki 1984), structural 
phase transitions (Parliliski and Zielinski 1981), etc. Similar equations have been 
applied to uniaxial ferromagnets (Khan 1986, Winternitz et a1 1988, 1989a, b), critical 
liquids (Cahn and  Hilliard 1958), to the kinetics of chemical reactions (Kuramoto 
1984), where it is referred to as a reaction-diffusion equation, and to biological processes 
(Belintsev er a1 1978). A list of further applications to such disparate areas as genetics, 
combustion processes, neuron physics and  even transmission line problems can be 
found in the review paper by Fife (1978) and in the paper by Aronson and Weinberger 
(1975). 

Moreover, special cases when a = 0 are encountered in nonlinear scalar field theories 
(Jackiw 1977, Winternitz et a1 1987). In the framework of these theories the nonlinear 
wave equation is solved on bounded or unbounded domains. When one deals with 
either real time-independent fields or with complex time-dependent fields where the 
spatial part is real and time dependence is harmonic, then it is natural to define 
solutions on the whole (3 + 1)-dimensional spacetime and assume that they must be 
twice differentiable, positive and should vanish on the boundary. It so happens that 
solving our  problem (TDLG equation), we encounter very similar equations. Formal 
similarity allows us to adopt some of the field theoretic results. 

Each of the particular applications dictates its own limitations. In  population 
genetics, for example, the possible values of the solutions are limited to the (0, 1) 
interval. In field theory, solutions must be continuous in the entire R space. In other 
models this requirement can be changed to an  integrability condition and  in yet another, 
solutions have to be bounded at infinity. A vast majority of papers concerned with 
TDLG or  similar equations treat these equations in (1 + 1)-dimensional spacetime. 

The main purpose of this paper is to analyse the TDLG equation (6) in (3+1)-  
dimensional spacetime in the context of the kinetics of phase transitions. This is a 
continuation of an  earlier paper (Skierski et a1 1988) where we presented the results 
of the symmetry reduction method applied to the TDLG equation. I n  the present paper 
we intend to focus on the type and  form of solutions of the reduced ordinary differential 
equations (ODE). 

The crucial questions related to this type of analysis address such aspects as the 
symmetry of the allowed solutions, the rate of phase nucleation, phase separation 
kinetics, the energy density required to create a particular solution, dynamics of domain 
walls, the symmetries of lower-dimensional defect structures, the role of dimensionality, 
etc. 

A very brief outline of the methods of calculation (symmetry reduction and PainlevC 
test) and their results is presented in the next section since a more complete presentation 
can be found elsewhere in the literature (e.g. Olver 1986, Ablowitz er a1 1980). 
Discussion of the manifold of solutions and of the form of symmetry variables then 
follows. The main part of the paper consists of an analysis of the obtained ODE and  
their solutions. A subsequent section reviews the results of the stability analysis for 
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various solutions. The final section is concerned with the physical interpretation 
including the energies of solutions. 

2. The methods of calculation 

There are two distinct methods applied in the analysis of the TDLG equation. First, 
the method of symmetry reduction has been used to find all the possible reductions 
from the given PDE to ODE, consistent with infinitesimal symmetry conditions. Second, 
for the obtained ODE the Painleve technique has been employed to determine which 
of them could be integrated analytically. 

2.1. The symmetry reduction method 

In  the first step, we look for the maximal Lie group of local transformations acting in 
the space of independent and  dependent variables in such a way that the second 
prolongation of an infinitesimal generator applied to the equation (in our case, equation 
( 6 ) ) ,  should be zero whenever the equation is satisfied. Since no constraints on aqldx, 
and a2T/dxf (1 6 i S 3 )  are imposed, the coefficients standing by these derivatives 
should be zero. This leads to an overdetermined system of equations for the coefficients 
of infinitesimal generators which is called a system of determining equations. This 
entire step is completely algorithmic and, in fact, was done using a symbolic computer 
program written in the MACSYMA symbolic language by Champagne and  Winternitz 
(1985). A system of 18 determining equations was obtained. In our case all the 
coefficients of infinitesimal generators have been obtained explicitly. Thus, as a result, 
the following nine generators were obtained for three different Lie algebras: 

a 
p =- i=O, 1 ,2 ,3  

L, = &,,AxhP, 
' ax, 

i, j ,  k = 1,2,  3 

The commutation relations for these operators are as follows: 

[ L,, LA 1 = & I A / ~ /  [PI, Cl = 0 [ L , ,  Pol = 0 ( s a )  

[ L,,  1 = &,LIP/ [Do, PI1 = -PI [De, Pol = -2po [Q,, L1 = o  (8b) 
where i, j = 1 ,2 ,3  and CY = 1, 2. 

These operators represent time (PI) and  space translations (P,, PI, P z ) ,  spatial 
rotations ( L ,  = L,, , L2 = L,,, L3 = Ll , )  and dilations ( D , ,  D2) ,  respectively. We have 
used the notation (x,,, xl, x2, x3) = ( t ,  x, J: z ) .  Note that in (8) the commutator [ D , ,  D2] 
has not been listed since these two operators never appear in the same algebra. 

The first algebra is generated by 

{P,, P Y ,  PI, pz, LI,, L,:, L;,}=e(3)@{P,) 
where e(3) denotes the algebra corresponding to the Euclidean group consisting of 
translations and  rotations in three-dimensional space. The algebra e ( 3 ) 0  { P,} corre- 
sponds to the case when one of the following conditions is satisfied by (6): 

( i )  d # 0 and  at least one of a, b and c is non-zero 
( i i )  d = 0 and c # 0 and  at least one of a and b is non-zero. 
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This means that second-order (ii) or first-order ( i )  spontaneous or field-induced phase 
transitions are included and all the points on the phase diagram are allowed except 
for the critical or multicritical points. 

The second algebra is generated by 

{P,,  P x ,  P y ,  P z ,  Lyx, Lx,, L,, @I = ( e ( 3 ) @ { P , ) )  E {a) 
and it corresponds to the case when c # 0 and a = b = d = 0 which means that only the 
critical point for spontaneous second-order phase transitions is allowed. 

The third algebra is generated by 

{P,,  p x ,  py, pz, LYX, L x , ,  Lzy 9 a) = (e(3)@{P,l) E {a) 
and it corresponds to the case when d # 0 and a = b = c = 0, which means that only 
the tricritical point for spontaneous phase transitions is allowed. 

In the next step we find representative subgroups of all the classes of the adjoint 
subgroups. The main operations of this algorithm were described in the sequence of 
papers by Patera et a1 (1974, 1975, 1976a, b, c, 1977). Following this algorithm, we 
found all such subgroups having generic orbits of codimension one. The corresponding 
subalgebras are systems of first-order differential operators. For each subalgebra, 
applying these operators to arbitrary functions of x and 77, we obtain a system of 
first-order PDE which can be easily solved by the method of characteristics. Eliminating 
the unknown function 77 from the system of first integrals of these first-order PDE, we 
obtain new independent variables ((x, t )  called symmetry variables. This step is crucial 
in our method since the symmetry variables are invariants of the assumed subgroup. 
Next, from this system of first integrals we derive the unknown function 77 as a function 
of ( and we obtain 

77 = d t ,  x, Y ,  z ) f ( l ( t ,  x, Y ,  z ) )  (9) 
where p and ( are functions of x, y ,  z and t given by the symmetry of the problem, 
and f ( ( )  is required to satisfy an ODE. Substituting (9) into (6), we reduce the TDLG 

to an ODE of first or second order. The results of this procedure are summarised in 
table 1. This procedure allows for a systematic classification of the reduced equations 
and their solutions from a group theoretical point of view. 

For a more comprehensive exposition of the symmetry reduction method the reader 
is referred to, for example, Olver (1986). 

2.2. The Painleve' test 

As stated by Ablowitz et a1 (1980), an ODE has the Painlevi property if the family of 
its solutions has no movable critical points (branch points or essential singularities). 
It has been conjectured that solutions of a second-order ODE having this property can 
be expressed in terms of elementary functions, elliptic functions or the six Painlev6 
transcendents. Thus, the knowledge of whether or not a given ODE satisfies the Painlevi 
test will assist in searching for its analytic solutions. Ablowitz et a1 (1980) gave an 
algorithm which verifies the necessary conditions for any ODE to have the PainlevC 
property. In the first step of this procedure the behaviour of solutions in the vicinity 
of a singular point is investigated. The dominant exponent in a series expansion must 
be a negative integer, otherwise it is a critical point. In the second step the relationship 
between the dominant exponent p and some higher exponents p + r where r > 0 is 
investigated. Obviously, to avoid critical points, r must be a positive integer. Finally, 
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Table 1. The results of symmetry reduction for the TDLG equation ( 6 ) ,  in the general case 
of arbitrary values for the parameters a, b, c and d. Here, we denote a = - f  for the 
a = b = d = O  case and (Y = -4 for the a = b = c = O  case. 

Case 6 P O D E  Pai nlevt ? 

4 

5 

6a 

6b 

l a  

7b 

8a 

8b 

9a 

9b 

1 Oa 

10b 

l l a  

1 l b  

t 

X 

u ( x + u t j  

- 
:X '+  y' 

tan-' y / x  

f tan-' y / x  

+ f B  log(x2+y')] 

- f B  l o g ( x 2 + y 2 j ]  

cot-' + 
v,x-+y 

cot-'& 
J X '  + y' 

t I2x' 

t / 2 x '  

t / [ 2 ( y ' +  z')] 

1 / [ 2 ( y ' + z ' ) ]  

t / ( x ' +  , v 2  + z ' )  

t / ( x ' + y ' +  z ' )  

1 df= a +  bf + cf ' + d f  First order 
d t  

d t '  
d'f df 1 

1 -+- =: ( a  + b f +  cf A No 
dt '  d( U 

+ d f  ') 
d'f 1 df -+- -= a + bf + cf'+ df ' No 

d'f 2 df 

d'f 
d[' 

d t 2  

-+-+----;-f-cf'=O Yes for B=*3i  

Yes for a =Oor d = 0 1 _- d2.f - a + bf + cfA+ df ' 

1 
d5' t d 5  

d t '  € d €  
1 -+--=a+bf+cf '+df5 Yes for a = b = c = O  

( X ' +  y')" -+f- cf A = 0 Yes 

Yes ( X 2  + y 2 ) "  - " f  +f-  df5 = 0 

48 '  -'" d'f df B 2 + 1  
( ( B ' + l ) ( x ' + y ' ) )  d t '  d[ 48- 

48' d'f df B 2 + 1  
-+-+-f-df'=O Yes for B = * 2 i  

( ( E ' + l ) ( x ' + y ' ) )  d[' d (  48' 

(x2+y'+ 2')" No d'f d f  -+cot(~)---cf~=O 
d t '  d 5  

cot( 6 )  -+$- d f  df' = 0 No (x '+  y'+ z')" 
d t 2  d 5  

d'f d f  
dS- d 5  

X 2 < r  5' 7 + ( 5 t '  + f j  -+ 2f  - C f  

= O  

NO 

xzcI  [' 1 d'f + (45'+f) -+%- d f  df' NO 
d t -  d5 

d'f d i  
dS- d l  

= O  

6' ?+ (45+$) '+f- C f  A 

= O  

( y 2 + z ' j " NO 

[ ' - 7 + ( 3 5 + 4 ) - + 2 - d f s  d'f d f  N O  
("2 + 2 ' ) "  

d5- d t  
= O  

( x' + + z' j a 

d'f d f  
d€-  d 5  
d'f d f  . 
d€-  d t  

(x2+y '+  2')" 5' -+ ( 6 5 +  1 )  I- ~f = 0 NO 

6' 7+ (4[+ 1) --.f - df ' NO 

= O  
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the relationships between expansion coefficients are analysed. The general solution 
of an nth-order ODE depends on n arbitrary constants. Since one of them is given by 
the position of the singularity, there are only n - 1 independent constants. Due to the 
nonlinearity of the ODE, we are usually unable to find a recursive relation for all the 
coefficients. The algorithm discussed here limits the investigation to a certain number 
of first terms (up to the term indexed by the highest positive integer resonance) whose 
powers were related to each other in the second step. Therefore, the necessary condition 
is that these coefficients depend only on n - 1 constants. It should be emphasised that 
examples of ODE which pass the PainlevC test and yet possess movable essential 
singularities are known to exist (Ablowitz et a1 1980). 

The above procedure has been performed by a computer using the program written 
in the MACSYMA symbolic language by Rand and Winternitz (1986). The results of 
this test are presented in the last column of table 1. In particular, case 2 and its various 
special cases can be integrated immediately, multiplying by df/d(, and we obtain, in 
general 

which is thus reduced to quadratures, and its solutions can be found in terms of 
elementary or elliptic functions. For equation 2 the substitution 

gives 

-=-(-) d2h d h  * dh+?dhs.  
d t 2  2h d(  [ d (  

Following Winternitz et a1 (1988a), case 7a can be transformed to its PainlevC form 
P VI1 (Ince 1956) using the substitution 

f ( 5 )  = A ( ( )  W ( V ( 0 ) .  (13) 
Finally, for case 7b, we use substitution given by (11) followed by that of (13) to 
obtain its standard form PXXIX (Ince 1956). 

It should be noted that a PainlevC test similar to the one used in this paper has 
been applied directly to PDE (Weiss et a1 1983). In fact, Keefe (1986) investigated the 
integrability of the complex cubic Landau-Ginzburg equation in (1 + 1) dimensions. 
It was found that it does not, in general, possess the PainlevC property, except when 
it corresponds to the integrable nonlinear Schrodinger equation. Therefore, we do not 
expect that our time-dependent Landau-Ginzburg equation is of PainlevC type in 
(3 +- 1) dimensions. This is reflected in the fact that the reduced ODE presented in our 
tables do not have the PainlevC property except for the above-listed special cases. 

3. Analysis of the symmetry variables 

Solutions of the PDE (6) are specified by appropriate boundary conditions. The applied 
method limits surfaces on which boundary conditions may be defined to the orbits of 
subgroups of the symmetry group. 

Furthermore, a solution 71 of the given PDE is related to a solution f of the 
corresponding ODE through the relation ~ ( x ,  y ,  z, t )  = p ( x ,  y ,  z, t ) f ( ( ( x ,  y ,  z, t ) )  where 
[ is constant on each orbit. 
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The following discussion of the geometry of orbits will provide us with an insight 
into both of these problems. We will also describe the geometry of orbits of lower 
dimension at the same time. The independent variables used are written in the following 
order: t, x, y,  z. We have found the following eleven distinct cases of symmetry variables. 

(i) 6 = t. This is a particularly interesting case since t appears only in the first-order 
derivative. The domain of this symmetry variable is R and the domain of the PDE is R4. 

(ii) 6 = x. This is just a prototype of a more general symmetry variable which can 
be an arbitrary linear combination of x, y and z. It describes quasi-one-dimensional 
stationary solutions. The equivalued surfaces for the order parameter are planes 
orthogonal to 6; in this particular choice of 6 these are yz planes. The domain of this 
symmetry variable is R. 

(iii) 6 = x + ut. This represents a quasi-one-dimensional solution moving with a 
constant velocity. The equivalued surfaces for the order parameter are planes 
orthogonal to t. The domain of this variable is R. 

(iv) 6 = J x '  + y 2  = r. The equivalued surfaces for the order parameter are families 
of coaxial cylinders whose axes pass through the origin and are parallel to the z axis. 
The domain of this symmetry variable is R, . The z axis contains singularities of the 
order parameter. 

(v) 6 = J x 2 + y 2  + z2 = R. The equivalued surfaces for the order parameter are 
spheres centred at the origin. The domain of this symmetry variable is R,. There is 
a singularity at the origin. 

(vi) 5 = tan-'(y/x) = d. In cylindrical coordinates 6 represents an angle. For this 
reason, imposing periodic conditions on the solutions implies that the domain of 5 is 
(0,27~).  Although 6 describes planes parallel to the z axis, the order parameter 
diminishes radially as the solution moves perpendicularly away from the z axis since 
f is multiplied by p - r-' for d = 0 and by p - r-'12 for d # 0. 

(vii) 6 = tan-'(y/x) + $ B  log(x2+y2). In cylindrical coordinates 5 becomes 6 = 
4 + B log r. Although 6 describes logarithmic spiral surfaces parallel to the z axis, the 
order parameter diminishes radially as the solution moves away from the origin since 
f is multiplied by p - r-l for d = 0 and by p - r-"* for d # 0. With periodic boundary 
conditions imposed on the solution, the domain of the symmetry variable is the proper 
interval (0,27~). 

(viii) 6 = cot- ' (z /Jx2+y2) = 8. In spherical coordinates, 6 corresponds to the angle 
between the z axis and the position vector. The domain of 6 is therefore (0, 7 ~ ) .  
Although 5 describes cones symmetric with respect to the z axis where the origin of 
the coordinate system has been excluded, the order parameter diminishes radially as 
the solution moves away from the origin since f is multiplied by p - r-' for d = 0 and 
by p - r-''2 for d # 0. 

(ix) 6 =  t/2x2. This symmetry variable describes moving planes and the order 
parameter diminsishes inversely proportionally with the distance from the origin. The 
domain of 6 is R. 

(x) 6 = t / 2 ( y 2 +  2'). This symmetry variable describes a family of moving cylinders. 
The order parameter diminishes radially as the solution moves away from the cylinder's 
axis. The domain of 6 is R. 

(xi) 6 =  t (x2+y2+z2)- '  = t / R .  Although 6 describes spheres with radii expanding 
to infinity as t + 00, the order parameter diminishes radially as the solution moves away 
from the origin sincef is multiplied by p - R-' for d = 0 and p - R-'12 for d # 0. This 
symmetry variable is defined on the entire R. The origin is in an orbit of a smaller 
dimension. 
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-1.' f i < , ) =  constantl 

m I 1-2- f ( t 2 )=cons tan tz '  

Case (ii) 

@ Case (iv) 

ZZL f ( < , ) =  constant, 

f (5,) =constant, 

f (t2) = constant2 

f(<, ) = constant , 
fit,): constantz 

Case (v) 

Case (vi) 

Case (vii) 

fi5):constant 8 * - - - -  

Case (viii) 

f(t l  )=constant, 

f15,) = constant? 

Figure 1. A schematic illustration of the equivalued surfaces for the order parameter in 
cases (ii)-(viii) referred to in 8 3. 

In figure 1 we have schematically illustrated the surfaces on which 6 is constant 
in cases (ii)-(viii). Case (i) is trivial, cases (iii) and (ix) can be illustrated jointly with 
case (ii), case (x)  with case (iv) and case (xi)  with case (v). 

4. Solutions of the reduced ODE 

Since most of the considered ODE have continuous coefficients in the domain, we infer 
that for an arbitrary initial condition there exists a unique solution to the equation. 
However, in some applications we must deal with boundary conditions and in such 
cases there are very few facts known about the existence and uniqueness of solutions. 
See Winternitz et al (1988) for a discussion on the physical interpretation of the 
boundary conditions and the method of symmetry reduction. 

Case 1 from table 1 and its special cases, are readily integrable provided we know 
at least one root of the polynomial on the right-hand side. Unfortunately, there are 
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no analytical methods for finding roots of a general quintic polynomial. On the other 
hand, there are many computer programs for finding at least one root of a polynomial 
( I M S L  library) which enable one to decompose the polynomial into a product of 
first-degree or second-degree polynomials. We first consider the general form of 
case 1 

d f =  a + bf+ cf ' + df  '. 
d t  

The analysis of its solutions depends on the type of roots of the polynomial on the 
right-hand side of (14) and  is elementary. All the individual cases are integrable by 
the fractional parts method in terms of elementary functions. In most cases the obtained 
solutions cannot be inverted, so that results remain in implicit form. However, the 
asymptotic behaviour of the solutions can be found immediately from the form of the 
polynomial. Roots of the polynomial correspond to singular solutions which are locally 
stable and  which occur when the polynomial changes sign from positive to negative. 
They are attractive from one side and repulsive from the other when the root is of 
even order. This will be elaborated on in the next section. In addition, since this 
equation is autonomous, i f f  (5) is a solution, then f (  t+ to) is also a solution, for any 
to. It is apparent that solutions interpolate between the neighbouring stable roots 
(homogeneous phases). 

As special cases we can consider 

whose explicit solution is 

and the equation 

whose explicit solution is 

f ( t )  = [ 4 d ( 5  

Both of them have singular points at 5 = &, and tend asymptotically to zero as (+ m. 
Case 2 from table 1 

has recently received considerable attention and all of its exact solutions have been 
found for a = 0 and d # 0 (Winternitz et a1 1987), for a = d = 0 (Winternitz et al 1988) 
and for a # 0, d = 0 (Winternitz er al 1989a). Solutions of the general case with a and 
d non-zero have not been found explicitly. However, integrating (19) yields first ( l o ) ,  
and  a subsequent integration yields 
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where to and a, are integration constants. It is easy to see that the family of solutions 
of this equation includes both complex and  real functions and  the former have to be 
discarded on physical grounds in the present context. Among the latter, one finds 
solutions with and without singular points. Solutions with singular points can be 
interpreted as defect structures of the order parameter. Solutions which d o  not have 
singular points may represent extended modes (i.e. periodic) and  in particular may be 
trigonometric, but in general they are elliptic functions. They may also represent 
localised modes and  in this category one finds algebraic functions, bumps (non- 
topological solitons) and  kinks (topological solitons). The occurrence of the various 
types of solutions is determined solely by the values of the parameters a, b, c, d and 
the integration constant a,.  In figure 2 we have illustrated this, showing the bracketed 
term in the integrand of (20) as a function o f f  for a special choice of parameters and  
the ensuing location of particular solutions which interpolate between classical turning 
points. It turns out that: 

(a )  when the line joining two turning points is above the curve describing the 
bracketed term in the integrand as a function o f f ;  then the solution is complex; 

(b) when there is only one turning point (or none), the solution has singular points; 
(c) when both turning points are single roots of the polynomial in the integrand 

(d )  When one of the turning points is a double (or multiple in general) root of 

(e) when both of the turning points are double (or  multiple in general) roots of 

the solution is periodic and  bounded; 

the polynomial, then the solution is a bump; 

the polynomial, then the solution is a kink. 

Figure 2. A typical situation encountered for (19) and its solutions 
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For explicit forms of these various solutions the reader is referred to the papers of 
Winternitz et a1 (1987, 1988, 1989a). 

A special case of (19) with a = b = d = 0 

dif= cf 3 

d t 2  
can be integrated once to give 

where ro is an integration constant. For c > 0 all the solutions are either complex or 
real and have singular points (see Winternitz et a1 1988). For c < 0, on the other hand, 
when r , > O  the solutions are complex while for r o s O ,  they are real bounded and 
periodic and can be expressed as 

Another special case with a = b = c = 0 is 

integrating once and substituting f =&, it yields 

where r, is an integration constant. Again, its solutions have been analysed by 
Winternitz et a1 (1987) and for d > 0 they are either complex or real with poles. For 
d < 0 and ro > 0 the solutions are complex while for ro 6 0 they are real bounded and 
periodic and can be expressed as 

For these types of equations Ehrmann (1957) and independently Fucik and Lovicar 
(1975) proved that for the boundary problem on a bounded domain there is an infinite 
number of distinct solutions when it is assumed only that d < 0 or d = 0 and c < 0. 

Case 6a of table 1 

can be integrated once to give 

and its solutions can be found in Winternitz et a1 (1988). For the boundary conditions 
f (0) = f(277) and f ' ( 0 )  =f'(277), and for E = 1 and ro> 0 solutions are complex while 
for r,, < 0 they can be expressed as 
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where the integration constant r,, is discrete since it must satisfy the transcendental 
equation 

n =2,3,4, .  . . . 

for E = -1 there is only one real periodic and bounded solution, namely 

where -1 < rl < O  and rl is such that 

7 l  [ (1 
1+- 

- (1 +J1?-r,)''' = K 
2 

Case 6b of table 1 

can be integrated by substituting f =d% which yields 

Again, when E = 1 and ro> 0, the solutions are complex, while for r,<O they are 
bounded real and periodic. A complete analysis of the solutions to (34) has been given 
by Winternitz et a1 (1987) and in general we can write it as 

f = ( L L ) I I 2  (35) 

where z is either sn(A, t ,  k )  or cn(A28, k )  and ,u, v, A I ,  A2, A3 and k can readily be 
found in terms of the roots of the polynomial in (34). Solutions with E = -1 are mainly 
real with poles or complex, but for some choices of r,, (lrol S 2 f i )  may also involve 
bounded elliptic functions or bumps. The difference between this case and the previous 
one is in the periodicity condition on the Jacobi elliptic parameter k which is now 

4 K ( k ) / A i  = n T  i = 1,2 ,3  (36) 

and k depends on r,. 
Case 4 of table 1 is 

d2f 1 df - + - - = a + bf + cf ' + df ' 
d t 2  5 d 5  

(37) 

In the special case of a = 0, it has been investigated in a series of papers listed in the 
bibliography of Anderson and Derrick ( 1970). The existence of particle-like solutions 
was proved by Berestycki er a1 (1983). I t  is worth mentioning that they assumed that 
its solutions do not have a singularity at the origin, which means that lim,,,+ df /d t  = 0. 
The assumptions of the main theorem of their paper are fulfilled when a = 0 and b > 0 
and one of the following conditions is satisfied: ( i )  d < 0; ( i i )  d > 0 and c < --. 

Special cases of case 4, namely 

d2f 1 df d5'+2 %= cf 
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and 
d2f 1 df -+- -= df5 
d t 2  5 d5  

(39) 

have the interesting property that if f ( 5 )  is a solution then so is A p f ( A 5 )  where 
p = 2 / ( v - l ) ;  v = 3 ,  5, respectively, and A is an arbitrary constant. The idea of a 
numerical algorithm for finding solutions for the argument greater than 1 ( x >  1) is 
essentially identical to that for the Emden equation discussed below. 

Case 5 of table 1 
d f  2 df - + - - = a + bf + cf + df5 
d t 2  5 d 5  

was investigated in the context of field theory by Berestycki and Lions (1981, 1983). 
They proved the existence of a unique ground state for a = 0 and b > 0 under one of 
the assumptions: (i) d = 0 and c < 0; ( i i )  d > 0 and c < -m. They also showed 
the existence of an infinite sequence of solutions such that the value of the action goes 
to infinity as the index of a solution increases. 

Special cases of (40), namely 
d2f 2 df -+- -= 4 3  

d5’ 5 d 5  
and 

d2f 2 df -+--=df5  
d t 2  5 d 5  

have been discussed at length and (42) has been analytically solved by Winternitz er 
a1 (1987) and also by Cieciura and Grundland (1984). They are also special cases of 
the Emden equation. The Emden equation was intensively investigated by astro- 
physicists in the 1930s. Most of the results can be found in BAAS (1932) and in Davies 
(1962). They include a description of the asymptotic expansion in the neighbourhood 
of the origin and a numerical algorithm for the calculation of solutions with larger 
arguments. For (42) an explicit solution satisfying the condition thatf’(0) = 0 is given 
by 

I t  is especially interesting to note that similar solutions of (40) are unstable for b > 0. 
In general, special types of spherical and cylindrical solutions can be viewed as 

solutions to 
d2f n df -+- -= b f + c f s .  
d t 2  5 d 5  

When b = 0, a special solution can be found in the form 

(44) 

For small arguments (e<< 00) one can perturb the solutions of (44) around b = O  to 
obtain an approximate series expansion 

1 
2(n - 1) 

for n # 1, 3 
2 -n  1 / 2 1  

C 5 
f ( 5) = * ( -) - + b + A 2 5’- * ___ (Y) I’2 61 + , . , 
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for n = 1 (47) 

where the expansion coefficients A , ,  A’ and B, ,  B2 can be easily evaluated. Very 
recently, Banerjee and Cao  (1988) found rational algebraic solutions to a similar 
equation 

as 

(3  - n)’ 3 - n  (49) 

for c < 0 and  e > 0. We suspect that their method may be applicable to certain special 
cases of our  equations and  intend to pursue this question in the near future. 

Finally, Cieciura and  Grundland (1984) considered (40) with a = c = 0; b < 0 and 
d < 0. Using the technique of Kurdgelaidze (1954) they found the solution 

where A, p, to are real constants, and 

(3 = ($) 
and Z satisfies the equation 

and  thus can be expressed by elliptic functions. A special solution with C, = O  takes 
the Schonster-Emden form: 

2 - 1 / 2  

f (0  = [ 1 +($) ] ( 5 3 )  

For cases 7-11 it is easy to find singular solutions of the reduced ODE. Thus, since 
7 = pf (&) ,  we can generate in this way special solutions of the PDE, (6). 

Case 7a of table 1 

f + E f 3  = 0 
d2f df B’+1 -+-+- 
d t 2  d( 4B2 (54) 

is of PainlevC type only for B = 3i, in which case the general solution can be found in 
Winternitz et a1 (1988a). Unfortunately, all its solutions are complex except for the 
one when both integration constants are zero, i.e. 7 = *[C(X*+JI’)]-’’~. 

The general solution is 

f ( 5 )  = * $ C ,  exp( - fO sd[& (c,  exp( -f()  + CJ, &I ( 5 5 )  
where c I ,  c2 are integration constants and the Jacobi modulus is k = a. 

Case 7b of table 1 

f +  &f5 = 0 
d’f df B2+1  -+-+- 
d5’ d 5  4B’ 
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passes the PainlevC test only for B = 2i. Then, its general solution is 

where W is an arbitrary solution of the equation 
W’= w4+ cw 

All its solutions are complex except the trivial one: 
T = i [ ( - 4 d ) ( x 2  +Y’)]-’’~. 

Using the Adams method we have produced plots of numerical solutions to some of 
these equations. The I M S L  package was employed. As the most general example we 
have used case 4 from table 1 and used a number of initial conditions. It is quite 
apparent from figure 3 that the solutions are very sensitive to initial conditions. Similar 
results have been 

f ( 5 )  

5 5 

Figure 3. Numerical solutions of case 4 of table 1 for the polynomial roots fo = 0, f ,  = 1, 
f2 = 2, J3 = 3, f4 = 4 and several initial conditions. 

6. Stability properties 

In the framework of scalar field theories some results concerning stability of time- 
dependent solutions of ( 6 )  were obtained by Berestycki et a1 (1981). For a general 
problem we consider 

-- “ - A T  + A T )  
d t  

(59 )  

with ~ ( x ,  0) = $ ( x )  and  g ( T )  must satisfy the condition (i) o r  (ii) stated below (40) .  
Consider 7 to be a solution of (37)  or  (40).  It can be regarded as a stationary solution 
of (59) defined on S, = R N ;  +(x, 0 ) ,  XES,.  From the general theorems we know that 
a solution of (59) exists for arbitrary initial conditions $ ( x ,  0) E C 2 + ” ( S , )  where S,  = 
RN(O,  t ) .  We shall denote this solution by u ( t ,  g ) .  
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Dejnition. We say that 4 is stable if for any E > O  there exists 6 > 0  such that if 
I I c $ - $ l l < S  for $EC’+’’(S,), then: 

(i)  [ ( $ ) = a  
(ii) ~ ~ u ( t , , ) - - ~ ~ ~ < &  forany tE jW,.  

Here l l$l l  denotes the absolute value norm in C o ( R N ) .  Otherwise, c$ is called 
unstable. 
Theorem. Let the right-hand sides of (37) and (40) satisfy the conditions (i)  and (ii) 
below (37). Then, any positive, radially symmetric solution 7 of (37) or (40) which 
tends to zero at infinity is unstable. 

It is important to note that the condition d > 0 and c = -- corresponds 
physically to the transition point for first-order phase transitions. Hence, the above 
theorem confirms our expectations concerning the stability of solutions. It is obvious 
that under the assumption a = 0, (37) and (40) are invariant with respect to the change 
of the dependent variable f+-J Therefore, the result remains true for a negative, 
radially symmetric solution which tends to zero at infinity. Another consequence of 
this theorem is that solutions of (37) and (40) which are finite at 0 and vanish at infinity 
can be stable only when they have at least one zero. The stability of (40) in the context 
of field theory models was also investigated by Anderson and Derrick (1970) but 
because they considered complex solutions, their results are not very relevant to our 
considerations. 

The stability of solutions of (15) and (17) can be analysed in the same way as the 
stability of solutions of (14). There are specific results in the literature given by Fife 
(1978) and Aronson and Weinberger (1975). They showed that there are no bounded 
stable asymptotic states for c > 0 (correspondingly for d > 0) and that the trivial solution 
0 is the only bounded asymptotic state when c<O ( d  < O ) .  

A different approach to the stability of PDE was adopted by Derrick (1964) in the 
context of nonlinear field theories. A time-independent solution was defined as stable 
when at a given point the functional derivative of the energy functional (in our case 
(2)) is equal to zero while the second functional derivative is positive definite at this 
point. Using such an interpretation, Derrick (1965) showed that (19) written in three 
spatial dimensions has no stable solutions which are time independent. 

Treated as strictly one dimensional, solutions of the reduced ODE may be analysed 
for stability. However, in our model two independent variables are still present and 
these solutions are in fact quasi-one-dimensional. A small perturbation will very likely 
cause dissipation of energy into the directions orthogonal to the propagation axis, 
resulting in a loss of stability by the solution. This aspect, however, requires further 
analysis. For now, however, we shall make a few comments about the stability 
properties of these ODE. 

First, the stability of solutions of (14) can be easily found from the graph of the 
first derivative df /d l  as a function of f  (see figure 4). A singular solution (constant 
equal to one of the real roots of the polynomial on the right-hand side of (14)) is 
attractive if the polynomial decreases at this point, is repulsive when the polynomial 
increases at this point and is repulsive from one side and attractive from the other, 
otherwise. 

Second, for (19) and its special cases, (21), (24), (27) and (33), we may integrate 
it once and take a square root to obtain 

1 bf2 cf4 d f 6  df=+a af+-+-+-+a, , 
d 5  [ 2 4 6  
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t 

d f  / 
I +-+ At t rac t i ve  roo t  

c) Repulsive root 
Attract ive-repuisive root 

Figure 4. A graph of df/d[ as a function o f f  for (14). 

This can be plotted the same way as before. But this time the plot should be done for 
each value of a, separately. The result is a family of orbits defining the trajectories 
of real periodic solutions which satisfy the variational principle for the free energy in 
the configuration space. A schematic illustration of this case is shown in the lower 
part of figure 2. Each orbit has a different but finite energy density which progressively 
increases with the radius of the orbit for d > O  and decreases for d < O .  Orbits 
corresponding to infinite approaches to a turning point have finite total energies. 

7. Discussion and conclusions 

In this paper we have presented a comprehensive analysis of the time-dependent 
Landau-Ginzburg equation in (3 + 1) spacetime dimensions. The method used was 
the symmetry reduction for PDE. We have found three distinct cases: (i) the vicinity 
of the critical point; (ii) the vicinity of the tricritical point; (iii) the remaining regions 
of the phase diagram. Each of these cases leads to different reduced ODE and different 
symmetry variables although some of them appear to be special cases. We have either 
solved the obtained equations or referred the reader to appropriate papers where 
solutions have been published. Several cases do not satisfy the PainlevC property and 
it is not known if they can be solved analytically. We have found time-dependent 
homogeneous phases which interpolate between stable phases of the free energy 
functional, through various types of decay. We have also found time-independent, 
translationally; cylindrically or spherically symmetric solutions of a variety of func- 
tional forms which include real solutions with or without singularities, periodic and 
localised types. We have also found reductions (only at the critical or tricritical points) 
which lead to solutions which exhibit stationary spiral patterns and are radially damped 
from the z axis. These do  appear similar to the so-called Winfree waves which have 
been discovered in the kinetics of chemical reactions, and described using the formalism 
of reaction-diffusion equations (Ortoleva 1980) analogous to our TDLG. In the past, 
theoretical description was provided by simply postulating the form of the symmetry 
variable. Here, we believe for the first time, we have derived it from symmetry principles. 
One reduction leads to a spherically symmetric wavefront which propagates with time. 
However, its analytic form is unknown. We have illustrated the reductions leading to 
non-PainlevC ODE with numerical and approximate solutions. 
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Finally, we wish to mention that in some of these cases one can calculate the energy 
or energy density of the solutions, depending on the case. First, for translationally 
invariant solutions this has been done already for a = d = 0 by Winternitz et a1 (1988a), 
who obtained explicit expressions for the energy per volume of all periodic solutions 
and  the total energy of all localised solutions performing direct integration. The same 
method is currently applied to d = 0, a # 0 (Winternitz et a /  1989a) and to d # 0; a = 0 
(Winternitz er a /  1989b). For cylindrically and  spherically symmetric solutions the 
energy functional, (2) can be significantly simplified using the equation of motion, 
( 3 7 )  or (40), respectively, and  integrating by parts. The result is that for cylindrically 
symmetric solutions the energy density is 

U-x v R - x  G o ( q ( R ) ) - $  ( Z ( R ) ) l + S  [ loR d p p  (2)2] .i) 
and for spherically symmetric solutions 

Note that in both cases the bracketed terms depend only on the bourldary conditions 
while the second terms depend on the bulk properties of q. For this reason, if 7 has 
a singularity at  the origin or at  infinity, the energy density of the solution will also be 
divergent. If, on the other hand, there is a singularity at O<po<oo, then, for q - 
A(p - p J Y  being the type of singularity at po, the energy density will: (a) diverge if 
v > 4 (respectively 1) for cylindrical (respectively spherical) solutions; (b)  be unaffected 
by the singularity if v < i  (respectively 1);  (c) be changed by a constant equal to 
- ( A v ) * / ( 2 v +  1) if v = +  (respectively 1). Calculations of the energies of the remaining 
solutions are underway. We believe that both spherically and  cylindrically symmetric 
solutions are very important at  criticality, especially in liquid crystals, fluids and gases 
where rotational symmetries are manifest and  spherical o r  cylindrical boundaries are 
most natural. Thus, further analyses of the properties of these solutions should be of 
great relevance to the kinetics of phase transitions for these types of materials. 
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